Monopsony power in labor markets across Texas school districts

Gue Sung Choi

February, 2022

Motivation

- How are wages determined?
- ► How much wage setting power do employers have?
- Teachers and school districts
- Limited number of employers & few outside options
- Similar labor characteristics
- Monopsony power across school districts?

Motivation

Research Question

- How much wage setting power (monopsony power) school districts have for employees?
- How does it vary across different job positions?
 - ► Teachers, nurses, counselors, librarians...

New Monopsony

- ▶ Where does wage setting power come from?
 - Inability (or unwillingness) to move to jobs with higher pay
 - Search friction, mobility, differentiated market...
- How do we measure it?
 - Labor supply elasticity for individual firms
 - Is a firm facing an upward sloping labor supply curve?
- How do we estimate labor supply elasticity?
 - Using Burdett-Mortensen-Manning model (Manning 2003), estimating elasticity of separation & recruitment is equivalent.
 - Theoretical model further simplifies the restriction.
- ► Approach widely used in recent empirical literature

Contribution

- Very rich literature on monopsony power in labor markets
- ► Some focus on more specialized, institutionalized markets
 - Teacher, nurse, online task ...
- ▶ Ransom and Sims (2010) : Public schools in Missouri
- ▶ **Falch (2010, 2011, 2017)** : Norwegian school teachers
- ▶ Matsudaira (2014) : Mandatory nurse employment law
- **.**..
- Use of exogenous wage shock to employees
- Heterogeneity across job positions within employers

Exogenous Wage Shock

- ► Each school district directly hires their employees and determine wage schemes each year.
- No collective bargaining in Texas school districts.
- State legislation occasionally gave raise to school employees
 - ► Full-time teachers, counselors, school nurses, librarians
 - ▶ 1999-2000: \$3,000 / 2006-2007: \$2,500 / 2019-2020: \$5,000
- Permanent increases with funding from the state government

Exogenous Wage Shock

► Trend of annual pay for full-time teachers in Texas

Exogenous Wage Shock

► Trend of annual pay for full-time school nurses in Texas

Teachers' Wage Variation Across Districts

Quintiles defined by district-level average pay level in 1999

Teachers' Separation Rate Trends Across Districts

- ► Seemingly little impact in 1999-2000 & 2006-2007
- except 1st quintile districts

Identification Strategy

- What variations can be used?
- Job positions that benefited vs. that did not
 - Most para-professional positions did not benefited from the raises
 - e.g.) Educational aides

Initial salary levels

- Same \$3,000 pay raise is equivalent to:
 10% increase for teachers with \$30,000 salary
 5% increase for teachers with \$60,000 salary
- ► Variations in initial salary levels come from: Districts, tenure, experience, degree...
- Threat to identification?

Estimation Strategy

- ightharpoonup District level IV (1996 \sim 2009)
- ➤ 2SLS with instruments of two wage jumps in 1999-2000 & 2006-2007
- Previous specification

$$\Delta log(s_{dt}) = \beta \Delta log(w_{dt}) + f(X_{dt}) + \tau_t + \delta_d + \epsilon_{dt}$$
$$\Delta log(w_{dt}) = \gamma w_d^{t-1} + f(X_{dt}) + \tau_t + \delta_d + v_{dt}$$

- $ightharpoonup \Delta log(s_{dt})$: Difference of log average separation rates between year t and t-1
- $ightharpoonup \Delta log(w_{dt})$: Difference of log average wage levels between year t and t-1
- w_d^{t-1} : Total log salary level in 1999 or 2006 = 0 in years other than 2000 & 2007
- Unreasonable specification (γ is the instrument!)

Estimation Strategy

IV regression that makes sense

$$\Delta log(s_{dt}) = \beta \Delta log(w_{dt}) + f(X_{dt}) + \tau_t + \delta_d + \epsilon_{dt}$$
$$\Delta log(w_{dt}) = \gamma pctinc_{dt} + f(X_{dt}) + \tau_t + \delta_d + v_{dt}$$

- ▶ $pctinc_t = log(w_{dt-1} + 3000) log(w_{dt-1})$ if t = 2000 $pctinc_t = log(w_{dt-1} + 2500) - log(w_{dt-1})$ if t = 2007▶ = 0 in years other than 2000 & 2007
- Measures percentage-wise increases intended by the legislative raises given w_{dt-1}
- $ightharpoonup \gamma$: How much of actual wage changes in 2000 & 2007 is attributable to $pctinc_t$?
 - Given relationship between wages and time-varying controls of other years

Results

▶ Base IV results

	Teacher	Librarian	Counselor	School Nurse
Log totalpay	-6.5833**	-18.1131	-2.9366	-17.3484
	(2.6557)	(30.2820)	(19.9410)	(14.9203)
Master	0.3738	2.0119	1.1632	-1.4601
	(0.9860)	(2.4083)	(0.8434)	(3.7996)
Doctor	-11.2572	5.4118	1.4075	-6.5148
	(7.1859)	(7.8917)	(0.8101)	(13.0217)
Experience	0.0887	0.1986	0.1152	0.1419
	(0.0589)	(0.2237)	(0.1731)	(0.1909)
Tenure	-0.0074	0.2116**	0.2753***	0.4083**
	(0.0418)	(0.0984)	(0.0567)	(0.1768)
N	12,974	2,463	4,433	2,438
Adj. R ²	0.1269	-0.0555	-0.0522	-0.0648

- Much larger separation elasticity than expected for teachers
 - $ightharpoonup \epsilon = 13$, where Ransom & Sims (2010) estimated around 3.5
- Other 3 job positions are not precisely estimated
 - Very small number of employees within a district

Results

Comparisons between different specifications

	Baseline	Previous IV	Large Districts	FTE payment	With Charter
Teacher	-6.5833**	-5.3387**	-5.7669**	-5.5679**	-0.3708
	(2.6557)	(2.5243)	(2.8929)	(2.6580)	(0.5756)
Librarian	-18.1131	-1.4628	-21.9352	-15.8014	-1.829
	(30.2820)	(20.5484)	(32.9103)	(18.2837)	(3.9767)
Counselor	-2.9366	-6.0969	10.2486	-4.5280	1.1648
	(19.9410)	(12.7433)	(28.1502)	(14.6738)	(3.8066)
School Nurse	-17.3484	-25.8982**	-8.1289	-14.5905	-11.6195*
	(14.9203)	(11.4313)	(17.1742)	(9.8506)	(6.4551)

- ► Teachers' estimates are relatively stable.
- Other 3 minor roles are highly unstable.
- ▶ Still, school nurses' estimates seem to be larger than teachers'.
- ▶ Individual level regression is expected to solve this issue.

Results

► First stage results

$$\Delta log(w_{dt}) = \gamma pctinc_{dt} + f(X_{dt}) + \tau_t + \delta_d + v_{dt}$$

	Teacher	Librarian	Counselor	School Nurse
PctInc	1.4744***	1.6587***	1.2781***	1.2608***
	(0.3458)	(0.4458)	(0.4965)	(0.2998)
Master	0.1023***	0.0683***	0.0219***	0.1338*
	(0.3429)	(0.0166)	(0.0076)	(0.0756)
Doctor	0.1745	0.1289**	0.0222***	-0.0360
	(0.1149)	(0.0605)	(0.0079)	(0.1726)
Experience	0.0181***	0.0065***	0.0080***	0.0109***
	0.0018	(0.0014)	(8000.0)	(0.0023)
Tenure	-0.0038	0.0016	0.0002	0.0083**
	(0.0024)	(0.0012)	(0.0006)	(0.0033)
N	12,974	2,463	4,433	2,438
Adj. R ²	0.6314	0.4984	0.3002	0.4094

- \blacktriangleright Would be best if γ is estimated around (or lower than) 1
- ▶ \$3,000 raise led to \$4,200 increase in actual wage?
- ► May need to add extra regional control to better predict wage trends...

Replicating Ransom & Sims (2010)

- ► IV regression using base salary schedules of school districts
- Use base payment observed in the data
- Calculate average salary slope with actual base payment & tenure info of districts

$$s_{dt} = \beta log(w_{dt}) + f(X_{dt}) + \tau_t + \delta_d + \epsilon_{dt}$$
 $log(w_{dt}) = \gamma_1 base_{dt} + \gamma_2 slope_{dt} + f(X_{dt}) + \tau_t + \delta_d + v_{dt}$

- Unlike the original estimation, I included:
 - Multiple years of observations with year fixed effects
 - District fixed effects, which partially replace district-level controls (cost of living, ...) included in the original paper

Replicating Ransom & Sims (2010)

Comparisons between the replication and original results

	Replication with Texas ERC		Ransom and Sims 2010	
	Basepay	Basepay + Slope	Basepay	Basepay + Slope
Log salary	-0.183*** (0.022)	-0.182*** (0.022)	-0.251** (0.079)	-0.248** (0.063)
Implied labor supply ϵ	2.472	2.458	3.691	3.758
N	14,345	14,223	451	438
Adj R ²	0.584	0.584	0.32	0.32

- Some differences in estimation strategies...
- ➤ Smaller estimates compared to Ransom & Sims (2010), but still comparable results
- ▶ Does the IV result show teachers' labor supply is actually more elastic?

Individual-level Estimation

- District-level estimation using yearly differentials was straightforward
 - Wage increase legislation could directly instrument yearly wage differentials.
- ▶ No possible with individual level observations
- Could do something similar to Ransom & Sims (2010)

$$s_{idt} = \beta log(w_{idt}) + f(X_{idt}) + \tau_t + \delta_d + \epsilon_{idt}$$

► How do I formulate first-stage relationship between wage increase and $log(w_{idt})$?

$$log(w_{idt}) = \gamma pctinc_{idt} + f(X_{idt}) + \tau_t + \delta_d + \epsilon_{idt}$$